Files
FFCardGame/tools/ai_card_reviewer.py
2026-02-02 16:28:53 -05:00

374 lines
13 KiB
Python

#!/usr/bin/env python3
"""
AI Card Reviewer - Uses Claude's vision to validate and correct card data.
Usage:
python tools/ai_card_reviewer.py # Review all unreviewed cards
python tools/ai_card_reviewer.py --set 1 # Review only Opus 1 cards
python tools/ai_card_reviewer.py --card 1-001H # Review a specific card
python tools/ai_card_reviewer.py --limit 10 # Review only 10 cards
python tools/ai_card_reviewer.py --dry-run # Don't save changes, just show what would change
Requires:
pip install anthropic
Set your API key:
export ANTHROPIC_API_KEY=your-key-here
"""
import argparse
import base64
import json
import os
import sys
import time
from pathlib import Path
try:
import anthropic
except ImportError:
print("Error: anthropic package not installed. Run: pip install anthropic")
sys.exit(1)
PROJECT_ROOT = Path(__file__).parent.parent
CARDS_FILE = PROJECT_ROOT / "data" / "cards.json"
REVIEWED_FILE = PROJECT_ROOT / "data" / "reviewed.json"
SOURCE_CARDS_DIR = PROJECT_ROOT / "source-cards"
# Rate limiting
REQUESTS_PER_MINUTE = 30
REQUEST_DELAY = 60 / REQUESTS_PER_MINUTE
def load_cards():
with open(CARDS_FILE, "r") as f:
return json.load(f)
def save_cards(data):
with open(CARDS_FILE, "w") as f:
json.dump(data, f, indent=2, ensure_ascii=False)
def load_reviewed():
if REVIEWED_FILE.exists():
with open(REVIEWED_FILE, "r") as f:
return set(json.load(f).get("reviewed", []))
return set()
def save_reviewed(reviewed_set):
with open(REVIEWED_FILE, "w") as f:
json.dump({"reviewed": list(reviewed_set)}, f, indent=2)
def encode_image(image_path: Path) -> tuple[str, str]:
"""Encode image to base64 and return (data, media_type)."""
with open(image_path, "rb") as f:
data = base64.standard_b64encode(f.read()).decode("utf-8")
ext = image_path.suffix.lower()
if ext in (".jpg", ".jpeg"):
media_type = "image/jpeg"
elif ext == ".png":
media_type = "image/png"
elif ext == ".gif":
media_type = "image/gif"
elif ext == ".webp":
media_type = "image/webp"
else:
media_type = "image/jpeg" # fallback
return data, media_type
SYSTEM_PROMPT = """You are a data validator for Final Fantasy Trading Card Game (FFTCG) cards.
You will be shown a card image and its current JSON data. Your job is to:
1. Verify all fields match what's visible on the card
2. Correct any errors you find
3. Fill in any missing data
4. Ensure abilities are accurately transcribed
FFTCG Card Structure:
- id: Card number (e.g., "1-001H" = Opus 1, card 001, Hero rarity)
- name: Character/card name
- type: Forward, Backup, Summon, or Monster
- element: Fire, Ice, Wind, Earth, Lightning, Water, Light, or Dark (can be array for multi-element)
- cost: Crystal Point cost (number in top-left)
- power: Power value for Forwards (number at bottom, in thousands like 7000). Backups/Summons have null power.
- job: Job class (e.g., "Warrior", "Knight")
- category: Game title (e.g., "VII", "X", "TACTICS")
- is_generic: true if card has no category (generic cards)
- has_ex_burst: true if card has EX BURST ability (lightning bolt icon)
- has_haste: true if the card has the Haste keyword ability (can attack/use abilities the turn it enters)
Ability Types:
- field: Passive abilities always active (includes keyword abilities like Haste, Brave, First Strike)
- auto: Triggered abilities (start with "When..." or have a trigger condition)
- action: Activated abilities (have a cost, often require dulling with S symbol)
- special: Special abilities (usually named abilities with S symbol cost)
Important Keywords to Identify:
- Haste: "This card can attack and use abilities the turn it enters the field" - set has_haste=true
- Brave: Card doesn't dull when attacking
- First Strike: Deals damage before opponent in combat
Respond ONLY with valid JSON in this exact format:
{
"changes_made": true/false,
"confidence": "high"/"medium"/"low",
"notes": "Brief explanation of changes or issues",
"corrected_data": {
// Complete card JSON with all fields
}
}
If the data looks correct, set changes_made to false and return the original data in corrected_data.
Always include ALL fields in corrected_data, even if unchanged."""
def review_card(client: anthropic.Anthropic, card: dict, image_path: Path) -> dict:
"""Review a single card using Claude's vision."""
image_data, media_type = encode_image(image_path)
user_message = f"""Please review this FFTCG card image and verify/correct the following JSON data:
```json
{json.dumps(card, indent=2)}
```
Look carefully at:
1. Card name spelling
2. Element (color of the crystal/card border)
3. Cost (number in the crystal)
4. Power (number at bottom for Forwards, should be null for Backups/Summons)
5. Job and Category text
6. All abilities - check type, name, trigger, effect text
7. EX BURST indicator (lightning bolt symbol)
8. Haste keyword - if the card mentions attacking or using abilities the turn it enters, has_haste should be true
Return the corrected JSON."""
try:
response = client.messages.create(
model="claude-opus-4-5-20251101",
max_tokens=4096,
system=SYSTEM_PROMPT,
messages=[
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": media_type,
"data": image_data,
},
},
{
"type": "text",
"text": user_message,
},
],
}
],
)
# Extract JSON from response
response_text = response.content[0].text
# Try to parse JSON (handle markdown code blocks)
if "```json" in response_text:
json_str = response_text.split("```json")[1].split("```")[0].strip()
elif "```" in response_text:
json_str = response_text.split("```")[1].split("```")[0].strip()
else:
json_str = response_text.strip()
return json.loads(json_str)
except json.JSONDecodeError as e:
print(f" JSON parse error: {e}")
print(f" Response: {response_text[:500]}...")
return None
except anthropic.APIError as e:
print(f" API error: {e}")
return None
def print_diff(original: dict, corrected: dict, card_id: str):
"""Print differences between original and corrected card data."""
changes = []
# Compare top-level fields
for key in set(list(original.keys()) + list(corrected.keys())):
if key in ("abilities", "image"):
continue
orig_val = original.get(key)
corr_val = corrected.get(key)
if orig_val != corr_val:
changes.append(f" {key}: {orig_val!r} -> {corr_val!r}")
# Compare abilities (simplified)
orig_abilities = original.get("abilities", [])
corr_abilities = corrected.get("abilities", [])
if len(orig_abilities) != len(corr_abilities):
changes.append(f" abilities: {len(orig_abilities)} -> {len(corr_abilities)} abilities")
else:
for i, (orig_ab, corr_ab) in enumerate(zip(orig_abilities, corr_abilities)):
if orig_ab != corr_ab:
changes.append(f" abilities[{i}]: modified")
if changes:
print(f"\n[{card_id}] Changes:")
for change in changes:
print(change)
else:
print(f"[{card_id}] No changes needed")
def main():
parser = argparse.ArgumentParser(description="AI Card Reviewer using Claude Vision")
parser.add_argument("--set", type=str, help="Only review cards from this set/opus (e.g., '1' for Opus 1)")
parser.add_argument("--card", type=str, help="Review a specific card by ID")
parser.add_argument("--limit", type=int, help="Maximum number of cards to review")
parser.add_argument("--dry-run", action="store_true", help="Don't save changes, just show what would change")
parser.add_argument("--include-reviewed", action="store_true", help="Re-review already reviewed cards")
parser.add_argument("--auto-mark-reviewed", action="store_true", help="Automatically mark cards as reviewed after AI review")
args = parser.parse_args()
# Check API key
api_key = os.environ.get("ANTHROPIC_API_KEY")
if not api_key:
print("Error: ANTHROPIC_API_KEY environment variable not set")
print("Set it with: export ANTHROPIC_API_KEY=your-key-here")
sys.exit(1)
client = anthropic.Anthropic(api_key=api_key)
# Load data
cards_data = load_cards()
reviewed_set = load_reviewed()
all_cards = cards_data["cards"]
print(f"Loaded {len(all_cards)} cards, {len(reviewed_set)} already reviewed")
# Filter cards to review
cards_to_review = []
for card in all_cards:
# Skip if already reviewed (unless --include-reviewed)
if not args.include_reviewed and card["id"] in reviewed_set:
continue
# Filter by set if specified
if args.set and not card["id"].startswith(args.set + "-"):
continue
# Filter by specific card if specified
if args.card and card["id"] != args.card:
continue
# Check image exists
image_path = SOURCE_CARDS_DIR / card.get("image", "")
if not image_path.exists():
print(f"Warning: Image not found for {card['id']}: {image_path}")
continue
cards_to_review.append((card, image_path))
# Apply limit
if args.limit:
cards_to_review = cards_to_review[:args.limit]
if not cards_to_review:
print("No cards to review matching criteria")
return
print(f"\nReviewing {len(cards_to_review)} cards...")
if args.dry_run:
print("(DRY RUN - no changes will be saved)")
print()
# Track statistics
stats = {
"reviewed": 0,
"changed": 0,
"errors": 0,
"high_confidence": 0,
"medium_confidence": 0,
"low_confidence": 0,
}
# Review each card
for i, (card, image_path) in enumerate(cards_to_review):
print(f"[{i+1}/{len(cards_to_review)}] Reviewing {card['id']}: {card.get('name', 'Unknown')}...", end="", flush=True)
result = review_card(client, card, image_path)
if result is None:
print(" ERROR")
stats["errors"] += 1
time.sleep(REQUEST_DELAY)
continue
stats["reviewed"] += 1
confidence = result.get("confidence", "unknown")
stats[f"{confidence}_confidence"] = stats.get(f"{confidence}_confidence", 0) + 1
if result.get("changes_made"):
stats["changed"] += 1
print(f" CHANGED ({confidence} confidence)")
print(f" Notes: {result.get('notes', 'No notes')}")
corrected = result.get("corrected_data", {})
print_diff(card, corrected, card["id"])
if not args.dry_run:
# Update card in data
for j, c in enumerate(cards_data["cards"]):
if c["id"] == card["id"]:
# Preserve image path
corrected["image"] = card.get("image", "")
cards_data["cards"][j] = corrected
break
else:
print(f" OK ({confidence} confidence)")
# Mark as reviewed if auto-mark enabled
if args.auto_mark_reviewed and not args.dry_run:
reviewed_set.add(card["id"])
# Rate limiting
if i < len(cards_to_review) - 1:
time.sleep(REQUEST_DELAY)
# Save changes
if not args.dry_run and stats["changed"] > 0:
print(f"\nSaving changes to {CARDS_FILE}...")
save_cards(cards_data)
if not args.dry_run and args.auto_mark_reviewed:
print(f"Saving reviewed status to {REVIEWED_FILE}...")
save_reviewed(reviewed_set)
# Print summary
print(f"\n{'='*50}")
print("Summary:")
print(f" Cards reviewed: {stats['reviewed']}")
print(f" Cards changed: {stats['changed']}")
print(f" Errors: {stats['errors']}")
print(f" High confidence: {stats['high_confidence']}")
print(f" Medium confidence: {stats['medium_confidence']}")
print(f" Low confidence: {stats['low_confidence']}")
if args.dry_run and stats["changed"] > 0:
print(f"\n(Dry run - {stats['changed']} changes NOT saved)")
if __name__ == "__main__":
main()